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We argue that the random-matrix-like energy spectra found in billiards with pointlike scatterers are related
to the quantum violation of scale invariance of a classical analog system. It is shown that the asymptotic
freedom as expressed in the behavior of the running coupling constant explains the key characteristics of the
level statistics of the system.@S1063-651X~96!12509-5#

PACS number~s!: 05.45.1b, 03.65.Db, 11.10.Gh

The concepts of scale anomaly and asymptotic freedom
are among the key features of the gauge field theories which
describe the interaction of the elementary particles. It is less
widely recognized, however, that the scale anomaly can be
found in a vastly simpler setting of one particle quantum
mechanics. A particle scattered off a pointlike scatterer in
two spatial dimension is known to have an energy dependent
s-wave phase shift defying the scale invariance of its classi-
cal analog@1#. There exists a sister problem of particle mo-
tion confined in a hard-wall boundary with a pointlike scat-
terer inside. When the shape of the boundary is a rectangle,
the problem belongs to a larger category of systems known
as pseudointegrable billiards@2–5#, a special subset of bil-
liard problems@6,7#. This system is known for puzzling sta-
tistical properties of its energy eigenvalues@3,5#. It is shown
through numerical experiments that the level statistics of the
pseudointegrable billiard system resembles that of random-
matrix ensembles@8#, which are generally associated with
chaotic dynamics@9#. This is in seeming contradiction to the
absence of chaotic dynamics in a classical analog system.
Further, when the levels are collected at a higher energy
region, the level statistics moves toward the Poisson distri-
bution which characterizes the integrable classical dynamics.
Also, the system tends to show more Wigner-like statistics
when the genus of the billiard system is increased; that is, in
the present context, when the number of the singular scatter-
ers is increased. These facts have never received sufficient
explanation, in spite of several attempted studies based on
the semiclassical periodic orbit quantization theory@10,11#.

In this paper, we discuss the scale anomaly of billiards
with pointlike scatterers as it is reflected in the spectral prop-
erties of the system. Specifically, we derive expressions for
the energy and number-of-scatterer dependence of the effec-
tive coupling constant which predicts the level statistics that
belong to the aforementioned ‘‘pseudointegrable class.’’ We
show the results of numerical calculations which corroborate
this argument.

We consider a quantum particle of massM moving freely
inside a boundaryB in two spatial dimensions on which its
wave functions are assumed to vanish. We denote the eigen-
value and eigenfunction of the system as«n andfn , namely,

2
1

2M
¹2fn~xW !5«nfn~xW !, ~1a!

with

fn~xWB!50 where xWBPB. ~1b!

Assuming fn(xW ) to be normalized to unity, the Green’s
function is given by

G~0!~xW ,xW8;v!5 (
n51

`
fn~xW !fn~xW8!

v2«n
. ~2!

When the shape of the boundaryB is such that the classical
motion of the particle is regular~as in the case ofB being
rectangular!, the quantum eigenvalues exhibit the so-called
Poisson statistics. That is, the nearest neighbor spacing
sn5«n112«n is distributed according to the Poisson distri-
butionP(s)5exp(2s), and the spectral rigidity as the func-
tion of energy rangeL, takes the formD3(L)5L/15 @8#.

We now place a pointlike scatterer atxW0. Naively, one
defines the scatterer in terms of the Dirac’sd function in two
dimensions,

V~xW !5vd~xW2xW0!. ~3!

Under the scale transformationxW→axW , the potential is trans-
formed asV(xW )→V(xW )/a2. Since this behavior is identical to
that of the Laplacian operator in Eq.~1a!, the system isscale
invariant. One expects, therefore, that the dynamical proper-
ties of the system should not depend on the energy. For-
mally, the transition matrixT (T matrix! in the presence of
the scattererV is given by

T5V1VG~0!T. ~4!

The poles ofT give the eigenvalues of the system. Because
of the separability of the d potential, ^fnVfm&
5vfn(xW0)fm(xW0), theT matrix is also separable:

^fnTfm&5t~v!fn~xW0!fm~xW0!. ~5!

Apart from the trivial solutionv5«n for the case of
fn(xW0)50, the poles ofT are formally given by the roots of
the equation
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1

t~v!
5
1

v
2G~0!~v!50, ~6!

with

G~0!~v![G~0!~xW0 ,xW0 ;v!5 (
n51

`
fn~xW0!

2

v2«n
. ~7!

However, Eq.~6!, as it stands, is meaningless since

(
n51

`
fn~xW0!

2

v2«n
'^f~xW0!

2& (
n51

`
1

v2«n

'^f~xW0!
2&r0E

0

`

d«
1

v2«
→` ~8!

where^f(xW0)
2& is the average value offn(xW0)

2 among vari-
ousn. The divergence is brought about because the density
of states is constant~which we denoter0) with respect to the
energy. To handle the divergence, a scheme for regulariza-
tion and renormalization is called for. The most mathemati-
cally satisfying scheme is given by the self-adjoint extension
theory of functional analysis@12,13#. Here we just quote the
result. After the self-adjoint extension, the transition matrix
t(v) is given by

1

t~v!
5

~v2 iL!

12eiQ E dxWG~0!~xW ,xW0 ;v!G~0!~xW ,xW0 ; iL!

1
~v1 iL!

12e2 iQ E dxWG~0!~xW ,xW0 ;v!G~0!~xW ,xW0 ;2 iL!.

~9!

HereL is an arbitrary scale of the regularization, andQ ~0
< Q , 2p) is the parameter of self-adjoint extension. With
the straightforward calculation, we find that the energy ei-
genvalues of the system — the poles oft(v) — are deter-
mined by the equation

1

v̄
2Ḡ~v!50, ~10!

where

Ḡ~v!5 (
n51

`

fn~xW0!
2F 1

v2«n
1

«n
«n
21L2G ~11!

is the regularized version ofG(0)(v), and

v̄5F LsinQ

12cosQ (
n51

`
fn~xW0!

2

«n
21L2 G21

~12!

is the formal~or renormalized! coupling strength of the scat-
terer. We stress that in spite of the purely mathematical con-
struction of Eqs.~10!–~12!, it does correspond to the physi-
cal small-size limit of the problem of a finite-size obstacle
@14#.

Since the series of Eq.~11! is convergent, the problem is
now well defined. We look at the behavior of Eq.~10! at the

high energy regionv@L. For a given value ofv, we can
approximate Eq.~11! by truncating the summation at
n5nx(v),

Ḡ~v!' (
n51

nx~v!

fn~xW0!
2F 1

v2«n
1

«n
«n
21L2G ~13!

with an error given by

dḠ5 (
n5nx~v!11

`

fn~xW0!
2F 1

v2«n
1

«n
«n
21L2G

'^f~xW0!
2&r0E

«x~v!

`

d«F 1

v2«
1

«

«21L2G
'2^f~xW0!

2&r0
2 v

nx~v!
, ~14!

where we have used«x(v)5nx(v)/r0. Therefore, we can
set

nx~v!5av, ~15!

wherea is a constant inversely proportional to the allowable
error dḠ. Once the summation is truncated at finite terms,
we can rewrite Eq.~10! as

1

veff~v,v̄ !
2 (

n51

nx~v!
fn~xW0!

2

v2«n
50, ~16!

with the effective strengthveff(v,v̄) defined through

1

veff~v,v̄ !
5
1

v̄
2 (

n51

nx~v!

fn~xW0!
2

«n
«n
21L2 . ~17!

Comparing Eqs.~16! and~6!, one realizes that the problem is
now turned into an eigenvalue problem with finite basis
statesfn , n51, . . . ,nx(v). Although the system originally
has no inherent scale, the effective coupling strengthveff has
an energy scaleL, and, as a result, it acquires energy depen-
dence. This is possibly the simplest example of the scale
anomaly@1#. The effective couplingveff is also referred to
as running coupling because of its energy dependence.
When veff is large for the energy region of the interest, it
induces the mixing among the basis states, and results
in the so-called Wigner level statistics. That is, the
nearest neighbor spacing distribution is given by
P(s)5 1/2psexp(21/4ps2), and the spectral rigidity
D3(L) becomes considerably more rigid and approximately
given by D3(L)'1/p2lnL20.006 95 for L@1 @8#. It is
known thatveff is large only in one energy region determined
by the value ofv̄ andL @5#. Replacing the summation in Eq.
~17! with the integral in Eq.~14!, we have

veff~v,v̄ !'
v̄

12 v̄^f~xW0!
2&r0lnA11~nx~v!/r0L!2

.

~18!

At the limit v→`, we have lnA11„nx(v)/r0L…
2

' lnnx(v) ' lnv. We arrive at
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veff~v,v̄ !'2
1

^f~xW0!
2&r0lnv

~v→`!. ~19!

Remarkably, the formal strength disappears from the expres-
sion of the effective strengthveff in the high energy limit.
Therefore, the level statistics of the billiard system with a
pointlike scatterer is predicted to become more Poisson-like
at higher energy region, irrespective of the choice of the
formal couplingv̄. The fact that the strengthveff disappears
at the limitv→` goes along well with our intuition that, at
the classical limit, a pointlike obstacle has no effect on the
motion of a particle. At this limit, we havelogarithmic as-
ymptotic freedomwhere all the wave functions are unper-
turbed, and the scale invariance is restored in a trivial man-
ner. We note that when we replace the sum with the integral
in obtaining Eq.~18!, we implicitly assume that the size of
the billiard is far larger than the scale in discussion. That is
the reason why the size of the billiard boundary, which ob-
viously breaks the scale invariance, does not appear in our
arguments.

We next consider the case of two pointlike scatterers. We
place the scatterers atxW0 and xW1, with formal strengthsv̄0
and v̄1, respectively. The eigenvalues of this system are de-
termined by

U 1

v̄0
2Ḡ00~v! 2G01

~0!~v!

2G10
~0!~v!

1

v̄1
2Ḡ11~v!

U50, ~20!

whereḠi j (v) andGi j
(0)(v) are defined as

Ḡi j ~v!5 (
n51

`

fn~xW i !fn~xW j !F 1

v2«n
1

«n
«n
21L2G ~21!

and

Gi j
~0!~v!5 (

n51

`
fn~xW i !fn~xW j !

v2«n
. ~22!

Let us suppose that two scatterers are placed closely to each
other. We truncate the sum ofḠ00(v) and Ḡ11(v) at
n5nx(v), as before. As forG01

(0)(v), which is finite as long

as xW0ÞxW1, the same truncation is possible if two scatterers
are apart by

uxW12xW0u.
1

A«x
5S r0

nx~v! D
1/2

, ~23!

since the contributions from highern, which probe finer
length scale thanuxW12xW0u, cancel among themselves. Below
n<nx(v), we can approximatefn(xW0).fn(xW1), since
fn(xW ) is slowly oscillating in the distanceuxW12xW0u. The ma-
trix equation, Eq.~20!, then can be reduced to

1

veff
~2!~v,v̄0 ,v̄1!

2 (
n51

nx~v!
fn~xW0!

2

v2«n
50 ~24!

with the effective couplingveff
(2)(v,v̄0 ,v̄1) given by

veff
~2!~v,v̄0 ,v̄1!5veff~v,v̄0!1veff~v,v̄1!. ~25!

This equation reveals an interesting feature of the system
with two pointlike scatterers. Ifv̄0 differs from v̄1 apprecia-
bly, veff(v,v̄0) andveff(v,v̄1) become large at different en-
ergies. This means that the particle moving in the billiard
systemcannot seethe two scatterers at the same time for any
given energy. On the other hand, the two scatterers disturb
the particle in a coherent manner whenv̄0. v̄1. With Eq.
~19!, in the limit of v̄15 v̄0 we obtain

veff
~2!~v,v̄0 ,v̄0!52veff~v,v̄0!

'2
2

^f~x0!
2&r0lnv

~v→`!. ~26!

That is, two closely placed pointlike scatterers with the same
formal strength act as a single scatterer of twice theeffective
strength.

If we remove our assumption of two pointlike scatterers
located closely together, we have to deal with Eq.~20! di-
rectly. However, we do not expect an essential change of the
character of level statistics, since the statistical measures are
known to be rather insensitive to the precise location of the
scatterers. This allows us to generalize our findings to the
case of more than two scatterers. Let us consider a billiard
system with an arbitrary~finite! number of pointlike scatter-
ers inside. We classify the scatterers according to the mag-
nitude of the formal strength; we collect the scatterers with
the same order of magnitude of the formal strength as a
single group. We can expect that the scatterers belonging to
one of such groups disturb the particle motion in a coherent
manner in the energy region determined by their own formal
strength, while their influence never appears at different en-
ergies. In particular, in the case of scatterers with a common
formal strength, their effects are additive. Therefore, it is
predicted that one should obtain more Wigner-like level sta-
tistics by increasing the number of singular scatterers.

We now show the numerical data obtained from a rectan-
gular billiard system with several pointlike scatterers that
demonstrate the predicted behavior of the level statistics. In
Fig. 1, we display the spectral rigidityD3(L) of a rectangular
billiard system of size@L31/L#, L5p/e'1.155 72 with a
singular scatterer of strengthv̄50.15 placed atxW0 5
(0.6180L,0.414 21/L). The mass of particle is set to
M52p in units of mass scaleL51. This choice of param-
eters makes the effective coupling strongest at the region
around zero energy@5#. The statistics are taken separately
from 200th – 3200th, 3200th – 6200th, 6200th – 9200th,
and 9200th – 12200th states as indicated in the caption. In
the calculation, the unperturbed basis states with energy of
up to five times the energy when consideration are included.
The movement toward Poisson statistics at higher energy, as
predicted by Eq.~18!, is clearly visible. In Fig. 2, the rigidity
with one, two, and three scatterers are shown. The trend
toward more Wigner-like statistics for more scatterers is ob-
served as is expected from Eq.~26!. We note that the nearest
neighbor spacingP(s) also shows a corresponding behavior.
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Finally, we discuss our results in a broader context. The
standard approach in quantum chaology has been the semi-
classical periodic orbit theory@15,16# which is a truncation
of the WKB approximation. Recently, there have been suc-
cessful extensions of the periodic orbit theory to include
‘‘diffractive orbits’’ as the leading quantum correction
@17,18#. These approaches appear promising in treating a
more generic pseudointegrable billiard system with finite-
size objects with sharp edges~the type discussed in Refs.
@2,3,11#!. However, they may not be easily applied to the
present problem, since the semiclassical treatment of the dif-
fractive effects around the pointlike scatterer is currently not
well established. Our approach, on the other hand, is fully
quantum mechanical without any resort to semiclassical ap-
proximations. Although no direct link can be established at

this point, our results certainly give an insight into the prob-
lem of quantum level statistics of more generic pseudointe-
grable systems.

The spectral statistics of the billiard system studied here is
clearly a pedagogical manifestation of the quantum violation
of classical scale invariance. We believe that it enhances the
intuitive understanding of the scale invariance and asymp-
totic freedom which have been viewed as phenomena found
only in the esoteric theories of elementary particles.
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FIG. 1. Spectral rigidity at various energy regions of a rectan-
gular billiard of size@L31/L# (L51.155 72) with a singular scat-

terer placed atxW05(0.618 03L,0.414 21/L). The parameters are
M52p, L51, and v̄50.15. The solid and dashed lines are the
predictions of Wigner and Poisson statistics.

FIG. 2. Spectral rigidity calculated from 200th to 3200th states
with one @at (0.618 03L, 0.414 21/L)#, two @second one at
(0.30277L, 0.23606/L)#, and three @third one at (0.807 41L,
0.837 72/L)# singular scatterers.M52p, L51, and v̄50.15 for
all scatterers.
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